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LETTER TO THE EDITOR 
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Absbaet. The minimal fraction of errors a perceptron can make on P random dichotomies 
is investigated. An exact upper bound is presented as well as comparkons between the 
replica theory estimates and a rigorous lower bound. 

The computational capability of a perceptron, also termed formal neuron or linear 
threshold element, is an issue of interest in such diverse research fields as machine 
learning and statistical mechanics. In fact, the perceptron is the basic computing device 
in many complex neural networks, hence the interest to understand its computational 
limitations. Moreover, it is the only continuous, infinite range spin glass model that 
possesses a phase where the replica symmetry is broken. Unfortunately important con- 
tributions from each of these fields are usually not properly appreciated by the others. 
The main goal of this note is to compare a rigorous lower bound due to Venkatesh 
and Psaltis (1992) for the minimal fraction of errors E that a perceptron makes on P 
binary decisions with the average case results of Gardner's statistical mechahics frame- 
work (Gardner 1988). We derive also an exact upper bound for E. 

The perceptron we consider in this note is a device which accepts N binary (*I) 
inputs S = ( S , ,  S,, . . . , S,) and produces a single output bit o given-by the sign of a 
weighted sum of its inputs, 

The computational capability of such a device is measured 'by the maximum number 
of random decisions S'-m';l= 1, . . . , P it can reliably make. It was shown by Cover 
(1965) that, in the limit N+ m, 'the maximum number of random decisions a perceptron 
can realize without making errors is P=2N. This result was later re-derived by Gardner 
(1988) within the statistical mechanics framework. 

A related issue addressed in this note is how this computational capability is 
improved if one allows the perceptron the freedom to make a fixed number of errors 
on the P decisions. In this line, Venkatesh and Psaltis (1992) have demonstrated that, 
in the limit N - m ,  there is no choice of weights W for which a perceptron makes fewer 
than EP errors if the training set size is smaller than 
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Figure 1. Functiong(K) for, from top to bottom, &=0.001, 0.01, 0.1 and 0.3. 

Here, K,  is defined by the unique solution of the equation g(K) = 0, where 

g(K)-1-S - - -S(E)  (Y) 
and S(x) is the binary entropy function, 

1 
In2 

S(x) = -- ( x  In x+ (1 -x) In( 1 -x)) 

(3) 

(4) 

Clearly, equation (2) gives a lower bound to the maximal storage capacity of a percep- 
tron when a fixed fraction of errors E is allowed. Moreover, it shows that this maximum 
number of decisions increases linearly with N, as in the case where no errors are allowed. 
Interestingly, the scale P= aN appears naturally in the statistical mechanics framework 
as the condition to obtain a well-defined thermodynamic limit. Before we proceed 
presenting the statistical mechanics framework, some remarks about the definition of 
K, are in order. In figure 1, the function g(K) is depicted for several values of 8. This 
function possesses two roots so that K,  is not uniquely defined by the equation g ( K )  = 
0 and therefore one must specify which root must be chosen so that equation (2) holds 
true. In fact, a condition for the validity of equation (2) is that g(K,(l +A)) be positive 
for fixed but arbitrary A > O  (Venkatesh and Psaltis 1992). As seen in figure 1. this 
condition is fulfilled by the largest root only. For &+O this root is given by K.z% 
1+- so that n%2+-, in disagreement with the prediction a%2+4& 
of Venkatesh and Psaltis (1992). As expected, for E = O  equation (2) reduces to Cover's 
result (Cover 1965). Moreover, as pointed out by Brunel et a1 (1992). K. diverges for 
s+$(n+w). Moreover specifically, for large a this lower bound is given by 

& " P E - -  2 0.76,/?. ( 5 )  
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Figure 2. Several estimaks for F as function of n : rigorous lower bound (lower solid curve), 
replica-symmetric ansatz (long broken curve), one-step replia symmetry breaking ansatz 
(short broken curve) and exact upper bound (upper solid curve). 

Fortunately, these details ahout the specific dependence of K, on & are not relevant to 
the proof of equation (2). This lower bound is presented in figure 2 (lower solid curve) 

The statistical mechanics approach to the problem of determining the computational 
capability of a perceptron consists basically in searching for the ground state of the 
energy function 

with a taken as the independent parameter. . 

which counts the number of errors a perceptron with weights W makes on the P 
decisionsSi’+u‘. Here, @(x) = 1 if x >  0 and 0 otherwise..The minimal fraction of errors 
E is then given by 

wherefis the average free-energy density 

1 f=--(lnZ) 
BN 

and 2 is the partition function 

The parameter p = l / T  plays the role of the inverse temperature and models a fast 
noise acting on the weights. The symbol (. . .> in equation (8) stands for the average 
over the distribution of the input patterns S’and their respective output bits d. Each 
component of each pattern S: ,  as well as the output bits d, are chosen randomly equal 
to +I  or -1 with the same probability. The spherical constraint enforced by the delta 
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function in equation (9) is necessary to assure the integrals over Wt are finite. The 
average is performed through the replica method which consists in using the identity. 

. ,, 

1 ( I n n  =lim - In (Zn) 
n-o n 

evaluating (Z"} for integer n and then analytically continuing to real nz0. According 
to Gardner and Demda (1988), the final result for the average free-energy density is 

where 

(13) 1 Gd&b,%)=In[ II dW,exp h 5 w a W b .  

m n  

-m 0: I oCb 

The extremum is taken over the saddle-point parameters ( q a ,  qnb, where q. and 
qLb are Lagrange multipliers needed to enforce the spherical constraint and the definition 
of the physical order parameter 

I N  

respectively. The usual procedure adopted for evaluating the extremum in equation 
(1 1) is to assume an ansatz for the saddle point parameters qa, qsb  and 4ub so that the 
integrals in the expressions for Go and GI can explicitly be carried out. In this note we 
will consider two ansatz, namely, the replica symmetric (Shemngton and Kirkpatrick 
197.5) and the first step of Parisi's replica symmetry breaking scheme (Parisi 1980). For 
continuous weights perceptrons, the sole condition for the validity of these ansatz is 
their stability with respect to transverse fluctuations in the saddle-point parameters 4.b 

and &, (de Almeida and Thouless 1978). 
In the replica symmetric ansatz, one assumes that all order parameters are replica 

independent, i.e. qab= q, q5ub= r$ and q.= 7. The region of validity of this solution in the 
plane (a, T ) ,  obtained by evaluating numerically the stability condition (de Almeida- 
Thouless line) found by Gardner and Derrida (1988), is shown in figure 3. For a >2  
the replica symmetric saddle-point is unstable at low temperatures so that it could not 
be used to calculate the minimal fraction of errors, equation (7). For comparison 
purposes, however, we present E calculated with this ansatz in figure 2 (long broken 
curve). Note that it violates the lower bound of Venkatesh and Psaltis for large a. In 
fact, in this regime we find 
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Figure 3. Phase diagram in the (a, T )  plane, showing the de Almeida-Thouless line which 
delimi$ the region of validity of the replica-symmetric solution. 

which should be compared with equation (S).~Nevertheless, the fraction of errors at 
the de Ahneida-Thouless line EAT can be calculated exactly with the replica-symmetric 
ansatz, giving an upper bound for E since it is calculated at non-zero temperature. 
Actually, can be viewed as the minimal fraction of errors for which the replica- 
symmetric ansatz is physical (stable). This upper bound is presented in @we 2 (upper 
solid curve). Due to the re-entrance of the de Ahneida-Thouless line we find E A T % O . O ~  
at a = 2, so this curve does not appear in the inset of figure 2. 

We consider now the ikst stage of Parisi's replica symmetry breaking scheme. In 
this case the n replicas are divided into n/m groups of m replicas and one sets qob=q1,  
&= 4, if a and b belong to the same group and q&=qo, &b6=+0 otherwise. Moreover, 
q.= q for all replicas. This ansatz was studied by Erichsen and Theumann (1993) and 
the minimal fraction of errors E!& obtained from their equations is shown in figure 2 
(short broken curve). As the stability analysis of this solution has not been performed, 
its validity remains unknown. In this sense, the two bounds presented above may be 
of utility, since any physical solution should not violate,any of them. In fact, the one- 
step solution satisfies the two bounds for all values of a. 

It is interesting to note that, for a not too near 2, .the upper bound seems to be 
closer to the exact solution (one believes that further steps of replica symmetry breaking 
can only increase the estimate of E )  than the lower bound of Venkatesh and Psaltis. 

In summary, we have compared the estimates for the minimal fraction of errors of 
the replica symmetric and the one-step replica symmetry breaking ansatz with two 
bounds: a rigorous lower bound demonstrated by Venkatesh and Psaltis (1992) and 
an exact upper bound obtained in this note. As a consequence, we have verified the 
tightness of the former bound and provided evidence about the physicality of the replica- 
symmetry breaking solution. 

The authors thank FudaGZo de Amparo A Pesquisa do Estado do Rio Grande do Sul 
(FAPERGS) for supporting the visit of JFF to Porto 'Alegre. This research was sup- 
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